Epigenetika Csoport - Csoportvezető

Epigenetika Csoport - Csoportvezető

Utolsó frissítés: 2022 október 12.


 

Név: Dr. Szittya György
Tanszék: Növénybiotechnológia
Beosztás: tudományos tanácsadó
Telefon: +36-28/430-494 / 4230
Iroda: MATE GBI Gödöllő, Szent-Györgyi A. u. 4., I. emelet, szobaszám: 120
E-mail: Szittya.Gyorgy@uni-mate.hu

Publons
ORCID
MTMT2
ODT


Tudományos életpálya

  • csoportvezető, MATE, GBI, Növénybiotechnológia Tanszék, Epigenetika csoport (2021-)
  • Tudományos segédmunkatárs (Mezőgazdasági Biotechnológiai Kutatóközpont, Gödöllő, 1995-2003)
  • Tudományos munkatárs (Mezőgazdasági Biotechnológiai Kutatóközpont, Gödöllő, 2005-2011)
  • Tudományos főmunkatárs (Mezőgazdasági Biotechnológiai Kutatóközpont, Gödöllő, 2012-2013. Nemzeti Agrárkutatási és Innovációs központ, Gödöllő, 2014-2021)
  • Csoportvezető (Mezőgazdasági Biotechnológiai Kutatóközpont, Gödöllő, 2012-2013. Nemzeti Agrárkutatási és Innovációs központ, Gödöllő, 2014-2021)
  • egyéb beosztások (EMBO fellow, John Innes Center, Cellular and Developmental Biology Department, Norwich, UK, 2003-2005.
    Senior Research Associate, School of Biological Sciences, University of East Anglia, Norwich, UK, 2007-2011.)
  • MSc.: Okleveles agrármérnök és biotechnológus, Gödöllői Agrártudományi Egyetem, Mezőgazdaságtudományi Kar, Biotechnológia Szak, 1995.
  • PhD.: Biológiai tudományok, Klasszikus és molekuláris genetika doktori program, Biológia Doktori iskola, Eötvös Loránd Tudományegyetem, Budapest, 2003.


Kutatási terület

  • Csoportunk az epigenetikai módosítások szerepét vizsgálja paradicsomban. Az NKFIH által támogatott kutatási programjainkban (OTKA K-129171, K-134974, K-137811, PD-129119) a legkorszerűbb genomszerkesztési módszerek felhasználásával azt kutatjuk, hogy a genom DNS metilációs mintázatának a megváltozása milyen szerepet játszik a génműködés szabályozásában termésérés során.

Oktatási tevékenység

  • A nem-kódoló RNS-ek és az epigenetikai módosítások szerepe a génműködés szabályozásában (GENBT072N)


Válogatott publikációk

  1. Suppression of NB-LRR Genes by miRNAs Promotes Nitrogen-fixing Nodule Development in Medicago truncatula.
    Sós-Hegedűs, A., Domonkos, Á., Tóth, T., Gyula, P., Kaló P.,* Szittya, G*.
    Plant Cell Environ., 2020; 43(5):1117-1129., https://doi.org/10.1111/pce.13698.
     
  2. Molecular characterization and in vitro synthesis of infectious RNA of a Turnip vein-clearing virus isolated from Alliaria petiolata in Hungary.
    Tóth, T., Gyula, P., Salamon, P., Kis, S., Sós-Hegedűs, A., Szittya, G*.
    PLoS ONE, 2019 Oct 24;14(10):e0224398. https://doi.org/10.1371/journal.pone.0224398
     
  3. Transcriptome reprogramming in the shoot apical meristem of CymRSV-infected Nicotiana benthamiana plants associates with viral exclusion and the lack of recovery.
    Medzihradszky, A., Gyula, P., Sós-Hegedűs, A., Szittya, G., Burgyán, J*.
    Molecular Plant Pathology, 2019, 20 (12), 1748-1758. https://doi.org/10.1111/mpp.12875
     
  4. AGO-unbound cytosolic pool of mature miRNAs in plant cells reveals a novel regulatory step at AGO1 loading.
    Dalmadi, Á., Gyula, P., Bálint, J., Szittya, G., Havelda, Z.*
    Nucleic Acids Res., 2019, 47 (18): 9803–9817. https://doi.org/10.1093/nar/gkz690
     
  5. Ambient temperature regulates the expression of a small set of sRNAs influencing plant development through NF-YA2 and YUC2.
    Gyula, P.*, Baksa, I., Tóth, T., Mohorianu, I., Dalmay, T., Szittya, G.*
    Plant Cell Environ., 2018, 41(10):2404-2417. https://doi.org/10.1111/pce.13355
     
  6. Structural and functional analysis of viral siRNAs.
    Szittya, G., Moxon, S., Pantaleo, V., Toth, G., Rusholme Pilcher, R.L., Moulton, V., Burgyan, J.*, Dalmay, T.*
    PLoS Pathogens, 2010, 6 (4): e1000838.
    https://doi.org/10.1371/journal.ppat.1000838
     
  7. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening.
    Moxon, S.#, Jing, R. #, Szittya, G. #, Schwach, F., Rusholme Pilcher, R.L., Moulton, V., Dalmay, T.*
    Genome Research, 2008, 18 (10):1602-1609. # Equal contribution.
    doi: 10.1101/gr.080127.108
     
  8. Size selective recognition of siRNA by an RNA silencing suppressor.
    Vargason J.M., Szittya G., Burgyan J., Hall T.M.T.*
    Cell, 2003, 115 (7): 799-811. https://doi.org/10.1016/S0092-8674(03)00984-X
     
  9. Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation.
    Szittya G., Silhavy D., Molnar A., Havelda Z., Lovas A., Lakatos L., Banfalvi Z., Burgyan J.*
    EMBO Journal, 2003, 22 (3): 633-640.
    doi: 10.1093/emboj/cdg74
     
  10. Short defective interfering RNAs of tombusviruses are not targeted but trigger post-transcriptional gene silencing against their helper virus.
    Szittya G., Molnar A., Silhavy D., Hornyik C., Burgyan J .*
    Plant Cell, 2002, 14 (2): 359-372.
    doi: 10.1105/tpc.010366

+ egyéb jelentősebb alkotások (könyv, könyvfejezet, tananyag, szabadalom, fajta)

  1. Szaker H.M., Gyula P., Szittya G., Csorba T.* (2020) Regulation of High-Temperature Stress Response by Small RNAs. In: Miguel C., Dalmay T., Chaves I. (eds) Plant microRNAs. Concepts and Strategies in Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-35772-6_9
  2. Baksa, I. and Szittya, G.*. (2017) Identification of ARGONAUTE/Small RNA Cleavage Sites by Degradome Sequencing. Methods Mol Biol., 1640:113-128. doi: 10.1007/978-1-4939-7165-7_7.
  3. Szittya, G.* and Burgyán, J. (2013) RNA interference-mediated intrinsic antiviral immunity in plants. Curr Top Microbiol Immunol. 371: 153-81.  DOI: 1007/978-3-642-37765-5_6
  4. Szittya, G.,* Dalmay, T.* and Burgyan, J.* (2008). Plant Antiviral Defense: Gene Silencing Pathway. Encyclopedia of Virology, 5 vols. (B.W.J. Mahy and M.H.V. Van Regenmortel, Editors), pp. 141-149 Oxford: Elsevier.